Arithmetic euclidean rings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

About Euclidean Rings

In this article all rings are commutative with unit, all modules are unitary. Given a ring A, its multiplicative group of units (i.e. invertible elements) is denoted by A*. The customary definition of a Euclidean ring is that it is a domain A together with a map F : A + N (the nonnegative integers) such that (1) I : p(a) for a, b E r3 (0); (2) given a, b E -‘-I, b m;’ 0, there exist q and Y in ...

متن کامل

Arithmetic of Circular Rings

Circular arithmetic, introduced by I. Gargantini and P. Henrici [2J as an extension of the complex arithmetic, provided the formulati­ on of methods for solving some problems of computational complex anal­ ysis (e. g. tl:e inclusion of the polynomial complex zeros [2J, [3J, cir­ cular approximation of the closed regions in the complex plane [IJ, [4J , ~J, [8J, the evaluations of complex functio...

متن کامل

Arithmetic Convolution Rings

Arithmetic convolution rings provide a general and unified treatment of many rings that have been called arithmetic; the best known examples are rings of complex valued functions with domain in the set of non-negative integers and multiplication the Cauchy product or the Dirichlet product. The emphasis here is on factorization and related properties of such rings which necessitates prior result...

متن کامل

Arithmetic Rigidity and Units in Group Rings

For any finite group G the group U(Z[G]) of units in the integral group ring Z[G] is an arithmetic group in a reductive algebraic group, namely the Zariski closure of SL1(Q[G]). In particular, the isomorphism type of the Q-algebra Q[G] determines the commensurability class of U(Z[G]); we show that, to a large extent, the converse is true. In fact, subject to a certain restriction on the Q-repre...

متن کامل

The Λ - Dimension of Commutative Arithmetic Rings

It is shown that every commutative arithmetic ring R has λ-dimension ≤ 3. An example of a commutative Kaplansky ring with λ-dimension 3 is given. Moreover, if R satisfies one of the following conditions, semi-local, semi-prime, self f p-injective, zero-Krull dimensional, CF or FSI then λ-dim(R) ≤ 2. It is also shown that every zero-Krull dimensional commu-tative arithmetic ring is a Kaplansky r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1974

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-26-1-105-113